
Enterprise search with development for network
management system

MingXue Wang* Robin Grindrod* Jimmy O'Meara* Mikel Zuzuarregui** Eloy Martinez** Enda Fallon**
Network Management Lab* Software Research Institute**
 Ericsson Athlone Institute of Technology

Athlone, Ireland Athlone, Ireland
 mingxue.wang;robin.grindrod;jimmy.o.meara@ericsson.com emartinez;martinez@research.ait.ie efallon@ait.ie

Abstract—Browsing and searching network information for
observation, analysis and troubleshooting is an inherent part of
using the features and functions of any Network Management
System. Enterprise search has capabilities for handling various
data types and sources and big data scalability, and is
becoming an emerging technology for such network
management functions development. In this paper, we give an
overview on work done in our research and prototype team
regarding an advanced search project. We provide a brief
report on search fundamental knowledge and study of Solr
search platform stack. It answers common questions from
management and development teams regarding adopting
search technology for production development, and gives a
Solr reference card for developers. We also introduce two
advanced search features, user experience based search
recommendation and anomaly detection enhanced search
ranking from our research work. Two features are developed
to make network searches more efficient as it can help user
quickly locate the most valuable search results, but the concept
can be adopted for search applications in other domains.

Keywords—Enterprise search; Solr; Search
recommendation; Search ranking; Anomaly detection; Big data
analytics; Network management

I. INTRODUCTION
One of the trends in BI (business intelligence) and OLAP

(online analytic process) is that people are starting to
recognize the value of unstructured information in the
business, such as documents, web pages, e-mail messages,
and social networking connections and dialogues. It is very
hard for database technologies such as SQL, which have
generally been used for traditional BI applications, to handle
this unstructured data. Adopting enterprise search
technologies to give them the ability to handle both
structured data from corporate databases and unstructured
data sources is becoming a new style of BI application
development [1] [2]. This trend also applies to the domain of
network management systems. Various sources of
unstructured text information, such as alarm problem text,
trouble tickets, network log messages, etc. are overlooked in
current systems.

Network data comes from various network elements and
systems and is stored in different data stores. For example,
OSS (Operations support system) command logs are stored
in a relational database, user session events are stored in a

Hadoop file system, and alarms are stored in an object
database. Even for the same type of data store, there may be
multiple setups for different types of data. For example,
command logs are stored in Sybase RDBMS, but the
hardware log is stored in another SQL server RDBMS. Data
from very different sources are handled separately in general.
Adopting enterprise search to handle data from various data
sources gives users a centralized view and correlates network
data from different sources. This is important for many cases
of network analysis and troubleshooting. For example, a lot
of alarms have followed a command issued by a user or high
user session impacts happened after a configuration event.
This type of analysis is not available from any single data
source as the data is stored separately.

As a result, enterprise search is becoming one of the main
technology study areas for network management system
development in our research team. Since, our work involves
developing prototypes and researching new features, the
contribution of this paper is twofold:

• Firstly, we give essential knowledge on search
technologies and summarized information on different
components or frameworks associated with each
identified layer of the Solr [3] search platform stack.
The enterprise search technology and Solr platform are
expected to be exploited in this work. It also could be
used as a reference card for quickly finding the tools
suitable for solving the problems of building Solr based
search applications.

• Secondly, we describe two enhanced search features,
resulting from our research into giving a more efficient
search experience for network management systems. In
the first feature, the system recommends a search query,
etc., to users based on search experience learned from
other users. In the second feature, the search ranking
takes into account the anomaly score of data rather than
only relevance or time ranking. Nerveless, our concepts
and approaches can be easily adopted to enhance other
search application domains.

The rest of the paper is structured as follows, we provide
a fundamental understanding of enterprise search for system
development in section 2; we identify and describe different
software layers of the Solr search platform stack in section 3;
two enhanced search features developed for network

management systems will be described in section 4 and
finally, we give conclusions.

II. SEARCH FUNDAMENTALS
Search might be a kind of new technology for many

software applications. Production teams and management
generally require a fundamental understanding of the
technology before it can be introduced into production
systems. Based our own experience and questions we
encountered, we will try to answer the following questions,
to give an introduction to search, rather than explaining the
complex indexing mechanism or other technical details.

• Why do we need search?

o Search and SQL

• How to give good search results?

o Ranking and navigation

• Can it scale out?

o Big data search

• Is it production ready?

o Search software

These questions will be answered in the following
subsections.

A. Search and SQL
With both SQL Relational (or NoSQL) database systems

and search platforms such as Solr, data can be stored,
indexed, and retrieved. Many databases also have advanced
full-text index and search capabilities, for example
PostgreSQL and MySQL. Since, with most existing
applications, such as network management systems, data is
stored in a traditional database, it is a common question to be
asked, why should we use or migrate to a search platform for
our use cases.

There are overlapping functions between database
systems and search platforms. However, the two types of
systems have different focuses making them better for
different scenarios. Search engines focus on storing and
querying indexes of data rather than the data itself. It is
possible for data itself to either be stored within the search
engine or stored outside the search engine. Hence, search
engines do not offer database features for storing data, such
as complex tables/schemas for data modelling, ACID
(Atomicity, Consistency, Isolation, and Durability)
properties for database transactions, etc. but do provide
advanced search features such as sophisticated ranking
models, highlighting, etc.

Search engines can offer various advantages over SQL
database in many use cases:

• Advanced search features

Many advanced search features such as auto-suggestion
and proximity search are not available in database systems
due to the different focus of such systems. In many cases,
search engines are used as a secondary index of a database to

enhance the search capability while also reducing full
database scans.

• Fast query speed

Search engines are designed and optimized for finding
relevant documents from built indexes for a search query.
Unlike a database, it does not need to perform a full table
scan that would be required for a simple wildcard-based text
SQL search. It does not have many of the constraints of
database design, such as how quickly an individual
document can be updated or retrieved. This means that
search engines generally have faster query response times
compared to databases.

• Data information centralization

Enterprise data is normally stored in various data stores,
such as SQL databases, content repositories and file systems.
It is difficult for users to link information between different
data sources. A search engine has the ability to handle
various data sources and types (structured and unstructured).
This makes it possible to provide an information portal with
all the enterprise data in a single interface.

• Google like experience

Both SQL and Solr queries have expressive syntaxes for
complex data queries. A SQL query is designed for
structured data and requires specified data tables to match
users’ data queries. In a search engine, data is de-normalized
documents. A simple query can start with any terms or words
just like Google search. It is not necessary for users to know
any query syntaxes or data schemas to start data discovery.

B. Ranking and Navigation
Search applications are not only able to retrieve matching

information; the most important part is being able to find the
‘right’ information to answer the users’ questions. There
could be millions or billions of matching or relevant search
results; there are only a very small amount of results that a
typical user is willing to browse. It can be like trying to find
the right drop in an ocean for users. Two fundamental
approaches to tackling this problem in search application
development are: ranking and navigation.

• Ranking

Ranking can determine the most important (top-ranked)
query results based on ranking algorithms. Search engines
generally have one or more ranking algorithms built in, such
as the Vector Space Model (VSM) based algorithm in
Lucene [4]. These algorithms are fairly complex and
consider many factors to rank results, for example, how
important a word is to a document over the whole document
collection. Different algorithms may be needed for better
results for different application cases. For example, to
measure importance of web pages, (Google) PageRank is a
link-based ranking algorithm that takes into account
hyperlink information between web pages.

Ranking is one of the fundamental problems in
information retrieval. Optimizing existing or developing new
better ranking algorithms requires a huge amount of

scientific and domain knowledge, and could be a difficult
task. In most cases, application developers probably just use
the built-in ranking algorithms with some offered
customization functions. For example, a ‘boosting’ function
can assign more weight to words in the title than the content
of books.

• Navigation

Navigation gives a UI interface (e.g. advanced search
page) to allow navigation of search results. It, like a file
manager or browser, has research results organized in
different ‘directories’ or ‘filters’. It is a very common UI
feature in search engines, especially in e-commerce websites.
For example, clothes can be categorised by different sizes,
price, etc. It helps users to quickly reduce the search scope
through clicks. It makes it easy for untrained users to find the
specific data they are interested in. Two common techniques
are available for developing search navigation: faceted
navigation and document clustering.

Faceted Navigation: is based on faceted classification
which classifies documents using multiple taxonomies (sets
of attributes or facets). For example, a collection of books
might be classified using multiple attributes such as author,
title, date, etc. Hence, allowing users to explore a collection
of information by applying multiple filters. Faceting is an
available feature in Lucene and Solr for application
developers to directly use in a search UI.

Document clustering: is based on cluster analysis of
document contents to allow automatically grouping of
documents into different topics or subjects. For example,
results of a search for “Ireland” might be grouped into
different topics such as sport, finance, food, etc. As a result,
users can quickly select interesting topic groups and filter out
undesired ones. This feature is offered as a Solr search
component.

C. Big data search
A critical challenge in a variety of industry sectors, such

as telecoms, nowadays is that IT applications need to handle
very large and complex data sets, which are difficult for
traditional data management or data processing systems to
handle. This makes “Big data” one of the hottest topics in IT
industry today. The challenges include various data related
tasks such as collection, storage, analysis and of course,
search and discovery.

Scalability for big data problem does not exist for current
common search platforms, Solr or Elasticsearch.
Elasticsearch was initially developed for the purpose of
creating a scalable search solution. In the case of Solr, it
offers SolrCloud for setting up a cluster of Solr servers to
scale out and ZooKeeper is used for cluster coordination and
configuration, just as in the Hadoop cluster. As the result,
Solr search is an available add-on feature of many
commercial Hadoop distributions, such as those from
Cloudera and MapR. In these cases, Solr is one of distributed
applications integrated into the Hadoop platform and
managed by Hadoop management component (YARN) to
improve the cluster efficiency.

SolrCould distributes both the index process and the
queries automatically. It uses ZooKeeper to automatically
elect a new cluster leader when a leader goes down. This
avoids the single point of failure of a fixed master slave
cluster. The main underlying concept of SolrCloud for data
distribution is the same as database systems, by having a
large dataset split into multiple shards. Shards are the
partitioning unit for the index data, so that search load for
that the dataset can be split across multiple servers and
search results are merged across those shards.

D. Search software
In the market of search engines or platforms, there are

plenty of commercial products which offer great features,
such as Splunk. Nevertheless, we were more interested in
open-source projects for research prototype development, as
it has the convenience of being able to study the internal
technical details and implement customized features.
Moreover, many commercial search products are built on the
open source projects. For instance, Lucidworks Fusion,
Cloudera Search, etc. are built on Apache Solr.

Search engines implement the various complex search-
related operations, such as index building and querying.
Search platforms use the search engine under the hood and
build additional functionalities around it, such as scalability,
administration and filtering. There are dozens of open source
search engines and platforms [5]. Apache Solr and
Elasticsearch are the most popular open source search
platforms built on the Apache Lucene search engine [6] at
the moment. Since both platforms use a same engine and are
very actively developed, it is hard to find any significant
advantages of one over the other in their most recent
versions. Nevertheless, they are backed by different big data
vendors making it much easier to pick if a commercial
Hadoop distribution is already used in production. As a
consequence, our paper is mainly about a study with Solr.

We give a quick summary of the concern regarding
technology maturity and commercial support for production
development. Search software and vendors are well
developed. Open source search platforms Solr and
Elasticsearch are proved production ready and with
commercial support available. Solr is integrated and offered
in big data platforms of all three major Hadoop vendors
(Cloudera, Hortonworks, MapR).

III. SOLR SEARCH PLATFORM STACK
Search platforms are not majorly different from databases

or data warehouse systems from a conceptual view. Search
platforms are considered NoSQL data stores by many
people. In databases, data is stored into structured tables,
generally, and then queried from those tables. For search
platforms, data is indexed as documents and then the
documents are searched from the index.

We classify and present the search platform in the
following layers from bottom to top; from the various data
sources in the data layer that would like to be searched to
allowing the user to submit a search query and displaying
results in end user UI applications.

Figure 1: Solr search platform stack

NoSQL

Search
platform
service

UI
application

Data

Indexing &
searching

Logic
enhancement

Document
building

* Flume Hbase Cassandra
Document

/File Natural Language Web site Content
repository Spatial

API/
Handler
/Analysi

s

Morphlines Lily Solandra Tika UIMA OpenNLP GATE Nutch ManifoldCF Spatial4J

Lucene

Solr

API/Handler/Analysis Rule engine Carrot2

Hue Zoom data Blacklight Velocity UI AJAX SolrBanana

• Data

o Purpose: Represent various data types and
sources

• Document building

o Purpose: Build document information for
indexing

• Indexing and searching

o Purpose: Build and query a document
index

• Logic enhancement

o Purpose: Additional logic for processing
search queries and results

• Search platform service

o Purpose: Add additional functionalities of
search engine core to provide a service
platform.

• UI application

o Purpose: End-user search interface or
applications

In the following, we are going to detail each layer and the
corresponding software frameworks or components (Fig.1).
Since Solr was selected for our study, as discussed in the
previous section, only some major software related to Solr
will be covered in here.

A. Data
One of main advantages of the search platform compared

to a database is that it can handle both structured and
unstructured data. This means the search platform has the
capability to index and search data from existing database,
file repository, etc. The data layer represents these various
data types and sources.

Since the data sources are external or not tightly coupled
to search platforms and there are a huge number of data

storage software solutions, we will not detail the software
component for the data layer. However, search functions
might be only able to retrieve search results to work with
external data storage together if data itself is not stored inside
the search engine. Depending on the design of the search
application, the search engine could store only indexes of the
data while the data itself can be stored separately outside the
search engine with links to the indexes. Search results can
be retrieved from the external data storage based on the link
information. For example, web search engines normally do
not save the full content of Web pages from external web
servers but instead just store page indexes and the URL of
pages. Search engines used as secondary index of databases
such as Hbase, are similar examples.

B. Building documents
For common database systems, a Table is used as a data

structure to store related information. It consists of fields
(columns), and rows. Multiple tables can be formed for
different topics in a logic database, such as employee (name,
department, role…) table, customer (name, address, sex…)
table.

In the concept of a search engine, documents are the unit
of indexing and search. A Document is a set of fields. Each
field has a name and a textual value. It is just like a paper
document, which has title, author, date, etc. Unlike
databases, which can have multiple tables in a logical
database, all data in a search engine must be de-normalized
in to a single defined document schema in a logic document
collection (Fig.2).

Figure 2: Tables in a Database (left) V.S. Documents in a Collection (right)

Hence, for a piece of data, regardless of if it is structured
or unstructured, all searchable information of the data must
be extracted and converted to a document, so that it can be
indexed and searched afterward. Due to the complexity and
variety of data, additional software components to the Solr
API, handler, etc. might be used to build documents, for
example, for extracting information from audio files or web
pages; or for language translations.

Nutch

Highly scalable web crawler

 An open source Apache project
 Tightly integrated with Solr
 Modular, extensible architecture that allows adding of

plugins
 Distributed to provide scalability and reliability
 Supports different storage back-ends, such as Hadoop,

Hbase, etc. (Hadoop was a spun out subproject from
Nutch)

 Supports parsing with Tika

TIKA

Toolkit for detecting, parsing and extracting metadata
and text content from files for indexing

 An open source Apache project
 Integrated into Solr via a plugin that comes, by default,

with Solr.
 A simple unified interface for all parsers.
 Allow adding of new parsers as plug-ins.
 Support over a thousand different file types, such as

HTML, PDF, XML, audio, video, etc.
 Able to detect the language of a document.

UIMA

UIMA stands for Unstructured Information Management
Architecture. Framework for transforming unstructured
information, such as text, audio and video into structured
information

 Apache project, originally developed by IBM and used
in the Watson project.

 Native support for distributed computation for scale out
 Define custom pipelines of Analysis Engines

(annotators) which incrementally add metadata to the
document via annotations.

OpenNLP

Machine learning based toolkit for the processing of
natural language text

 Apache project, originally developed by IBM.
 Supporting many NLP tasks, such as tokenization,

sentence segmentation, part-of-speech tagging, etc. with
machine learning processes.

 Can be run under UIMA as a plugin

GATE

A suite of tools for text processing

 Open source project, originally developed by
University of Sheffield

 Similar to UIMA, has a GATE-UIMA interoperability
layer for combining GATE and UIMA

Kuromoji

A Japanese morphological analyser that provides the
Japanese language support in Solr

 Apache project originally developed by Atilika
 Tokenisation of Japanese text
 Supports part-of-speech tagging

Smartcn

A library for analysing Chinese text that provides the
Chinese language support in Solr

 Part of the Apache Stanbol project
 Tokenisation of Chinese text

Spatial4j

A geospatial Java library with Solr integration

 Open source library
 Provide common shapes that can work in Euclidean and

geodesic (surface of sphere) world models
 Provide distance calculations and other geospatial

mathematical functions
 Read shapes from WKT formatted strings

Lily HBase Indexer

A tool for indexing data stored in HBase

 An open source project developed by NGDATA and
Cloudera

 Allows you to define indexing rules
 Designed to scale
 Indexes asynchronously so that HBase performance is

not affected

Solandra

Integration of Solr and Cassandra

 An open source project developed by DataStax
 Uses Cassandra as storage to allow Solr to scale to huge

numbers of documents
 Supports most Solr features
 Data is available as soon as the write succeeds

Morphlines

Framework for easily developing Hadoop processing
applications for loading data into Solr, HBase, HDFS or
other data warehouse.

 An open source project developed by Cloudera
 No need to code, just simple configuration

C. Indexing and searching
Indexing is the process of converting document fields

into a format or index that facilitates rapid searching. A
simple analogy is an index that you would find at the end of
a book: That index points you to the location of topics that

appear in the book. These functions are implemented by a
search framework or library which is the core engine of a
search platform.

Lucene

Java search engine library for indexing and searching

 Apache project.
 Supporting field-specific indexing and searching,

sorting, highlighting, and wildcard searches, etc.
 With some state-of-the-art ranking algorithm

implementations, such as Vector Space Model (VSM).

D. Logic ehancement
It is sometimes necessary to apply additional processing

logic to search queries, search results, etc. in many
application use cases. For example, making searches return
the first paragraph of a text document field if the text content
is too long. In addition to the Solr API, handler, etc., there
are other Solr add-on components, which developers can use
that allow them to specify processing logic.

Business Rules for Solr

A module for Solr that integrates with rules engines.

 The feature was not completed in Apache Solr, but a
proprietary module is available from LucidWorks

 Allow modification of queries, search results or
documents before they are indexed by business rules.

 Integrate with Drools and other rules engines

Carrot2

Search results clustering engine

 An open source project included with Solr as a plugin
 automatically cluster small collections of documents,
 With specialized document clustering algorithms

implementations

E. Search platform service
Beside core indexing and search functions provided by

search engine library, i.e. Lucene, additional functionality
like HTTP APIs, administration interface; scalability, content
parsing, etc. are also commonly required for building search
applications. As a consequence, applications, such as Solr,
are built on top of the Lucene core engine to provide a search
platform service.

Solr

The search engine interface to the Apache Lucene search
library

 Apache project. Originally developed by CNET
networks.

 Based on Lucene and backed by Lucid imagination
 Has a simple REST based query interface
 Includes plugins for many frameworks described, such

as Tika, by default.
 Scalable using SolrCloud, which provides sharding and

replication

F. UI application
An end user application requires a UI for submitting

search queries and browsing search results, similar to a
database browser.

Velocity UI

Built-in default Solr search UI

 Based on Apache Velocity project
 Simple customizable UI based on Velocity templating

Hue

Hadoop Web UI contains Search UI for Solr

 Open source project developed by Cloudera
 Dynamic search dashboards
 Many customizable search widgets, e.g. data table, bar

chart, time lines, map etc.

Zoomdata

Visualization & Analytics Platform

 Proprietary software
 Built-in Solr connector
 Advanced visualization & analytics dashboard

VuFind

A library resource portal

 Open source project built on Solr
 Search and browse library's resources

Blacklight

Search interface for Solr

 An open source written in Ruby on Rails
 Customizable interface via the standard Rails

(templating) mechanisms

AJAX Solr

A JavaScript library for creating user interfaces to
Apache Solr.

 Open source project
 Some basic pager, tag cloud, map, etc. web widgets are

available

IV. ADVANCED SEARCH FEATURE DEVELOPMENT
As we discussed, an important part of a search system is

being able to quickly find the ‘right’ information to answer
users’ questions or search queries. As a result, this was the
innovation focus of our team and two advanced search
features were developed for the context of network
management systems.

In the following, due to the space and focus of this paper,
we only give an overview of two innovative search features
we developed for PoC. The detailed implementation and
evaluation will be given in our future publications.

A. User experience based search recommendation
Browsing and searching network information for

observation, analysis and troubleshooting is an inherent part
of using the features and functions of any Network
Management System. Improving the efficiency of the
manner in which users can operate network management
systems reduces the time taken to carry out processes and
resolve issues, increases customer satisfaction and reduces
operator costs.

Users of modern management systems must have a
substantial amount of knowledge and experience to discover
the information they need to carry out observation, analysis
and troubleshooting activities, since both network and
network management systems are becoming large and
complex. For example, if a user knows that a range of a KPI
values is commonly related to a problem, then they can
quickly filter out network nodes which have values outside
the ranges when the user performs a node data search. As a
result, if this KPI value filter can be recommended to other
users when they perform a similar search, then the search
function becomes more efficient and the length of time taken
to resolve a problem may be significantly shortened.
Recommendation techniques are common in e-commerce
applications [7] [8], for example, recommending news or
movies to users and thus promote sales. However, it is a
novel concept for search applications in telecom domain.

Figure 3 : search recommendation

The idea is that system learns or tracks user search
experience as search transactions or logs (Fig.3). When a
new search request is performed by a user, the system is able
to recommend search requests based on past user
experiences. The data captures the user search experience
and is modelled as follows:

• A user search request/action part 𝑉 = [𝑣𝑡 ,𝑣𝑙 , 𝑣𝑓] , that
can be further divided into three components; a term, a
filter, and a feature. These three parts cover the user
requirement of different aspects of a search. 𝑣𝑡 is a user
query which is composed of a number of keywords or
terms. 𝑣𝑙 is a set of filters applied on the search results
such as a specified time range or restrictions on the data
source, etc. 𝑣𝑓 is a feature containing different setting on
how the result is presented. For example, the result is
sorted by time or by ranking score, the result is faceted
by a RBS or/and severity, values are displayed in bar
chart or pie chart, etc.

• A rating/feedback part 𝑟 is a user rating of the results
returned from the query part. It is measured by user
interaction with search result. For example, mouse over
results, clicking on results, viewing different result
pages, scrolling windows, time spent on the page, etc.
More user interactions on a search result page indicate
that the results are more interesting to the users.

• A knowledge source part 𝑐 represents where the
knowledge comes from, such as a generic system user or
a domain expert. It gives different weights for different
user background and expert’s experience is given higher
weights to improve recommendation results.

When a user performs a new search request 𝑉′ , the
recommend score of past searches in search log can be
calculated based on 𝑠𝑠𝑠(𝑉,𝑉′) ∗ 𝑟 ∗ 𝑐 , where 𝑠𝑠𝑠 is a
similar measure function, e.g. Pearson correlation coefficient
commonly used for recommender systems [8] [9]. Search
requests with top scores will be recommended to the user for
the current search request. Hence, the user is able to apply
the filters, etc. directly by clicking recommended search
requests.

As a very simple example, when a user searches for a
network node “RNC9”, the system will recommend a time
filter for last 7 days and a bar chart which facets the data
results at a network Cell level. This is because the system
learnt that pervious users seem more interested in cell level
summary information of last one week when they search for
a cell management node. In our study with more than ten
network management engineers as users on prototype
evaluations, all users gave positive feedback and thought that
the feature is very useful to quickly zoom in on the important
information. It also can avoid ignorantly search queries from
users wasting system resources.

The search recommendation provides recommendations
that draw on the experiences of previous users of the system
in the form of recommended search, supporting data source
filters, important time windows, relevant data fields or KPIs,
or significant graphical charts to allow. It improves the
search efficiency by leveraging past user experiences for
network information discovery, analysis and troubleshooting.

B. Anomaly detection enhanced search ranking
Very large amounts of network data also create a great

challenge for network analysis and troubleshooting. It is very
hard to find valuable insights from large amounts of relevant
data even if a user is able to retrieve all relevant information
by search. For example, in our case study, there could easily
be hundreds pages of related data records or events returned
by searching for a network element with just a few minutes
time range before a problem occurs. In such a case, the Solr
features such as simply sorting data by time, or relevance
based result ranking becoming inadequate. The Solr
relevance based ranking returns the top ranked documents
which closely relate to the search terms, or the network
element we searched, but they do not necessarily have any
association to the problem with the network element. There
are many alternative ranking algorithms that exist, such as

web ranking [10] [11], but none of them addresses our
problem for network troubleshooting.

Figure 4 : Search ranking for network troubleshooting

Our solution targeted the problem by taking the anomaly
score into account when ranking data for user search queries
(Fig.4). For example, when a user submits a search query for
a network element (e.g. RNC17), protocol (e.g. FTP) or any
terms (e.g. CORBA), the top ranked search results are not
only highly relevant to the search query, but also are highly
abnormal compared to the rest of the retrieved data.
Anomaly detection is not new for network problem detection
[12], but integrating the technique to enhance network data
search ranking is a novel concept.

The technique is briefly described in the following.
Document results are divided as 𝐷 = {𝐷𝑤1,𝐷𝑤2, … ,𝐷𝑤𝑤} a
finite series of document bags in different sliding windows,
e.g. 3 minutes. Then, we can have a data statistic collection
𝐸 = {𝐸𝐷𝑤1 ,𝐸𝐷𝑤2 , … ,𝐸𝐷𝑤𝑤} based on document bags. 𝐸𝐷𝑤 is
a data statistic model for each term indexed, such as
document frequency or inverse document frequency . Given
a data space with multiple terms 𝑡1, … , 𝑡𝑥 and a data statistic
collection 𝐸𝐷𝑤1 , … ,𝐸𝐷𝑤𝑤 for these terms, by using various
anomaly detection techniques [13] [12], such as statistical
test and regression. We are able to calculate the abnormal
score for each term in different windows. If a data document
contains an abnormal term, then the document is considered
as a possible anomaly. The anomaly score of each term is
used to enhance the original Solr document ranking model.
i.e., documents/data records that contain terms with high
abnormal scores are expected to be ranked at the top. If 𝑏 is a
set of abnormal terms that was detected for a window and 𝑑𝑖
is a document, the calculation of ranking score for the
document with a user query 𝑞 can be briefly described as:

𝑠𝑐𝑠𝑟𝑠(𝑞,𝑑𝑖 , 𝑏) =
𝑉(𝑑𝑖) ∙ 𝑉�𝑞⋂(⋃𝑏)� ∙ 𝑆(𝑏)

|𝑉(𝑑𝑖)||𝑉(𝑞⋂(⋃𝑏))|

Where 𝑉 is a vector function for converting any term set as
vectors based on index data, and |𝑉| is Euclidean norm of
the vector. 𝑆 function is to boost score based on abnormal
scores of terms in 𝑏.

 To explain with a simple example, when a user searches
for a node to troubleshoot some service downtime that
happened the previous night and a number of records contain
the terms “high”, “temperature”, “restart”, etc., documents
containing the highlighted abnormal terms will be returned
as top ranked results to give the user insight.

 As a result, rather than simply sorting research results by
time, term frequency, etc., top ranked search results are
related to causes of network problems and give better results
for network analysis or troubleshooting. It makes search
more effective for network troubleshooting.

V. CONCLUSIONS
Browsing and searching network information for

observation, analysis and troubleshooting is an inherent part
of using the features and functions of any Network
Management System. As enterprise search has capabilities
of handling various data types and sources and big data
scalability, it is becoming an emerging technology for such
network management functions development.

In this paper, we have given an overview of work done in
our research and prototype team regarding advanced search
project. We provide a brief report on search fundamental
knowledge and study of Solr search platform stack. It
answers common questions from management and
development team regarding adopting search technology for
production development and gives a Solr reference card for
developers. We described two advanced search features, user
experience based search recommendation and anomaly
detection enhanced search ranking from our research work.
These features were developed to make network searches
more efficient as it can help a user quickly locate the most
valuable search results, but the concept can be adopted for
other search applications. More detail of these two features
and prototypes will be described in our future work.

REFERENCES
1. Libes, D.E., E.L. Morse, and J.C. Scholtz;. A Study on Search Engine

Use by Intelligence Analysts. in IASTED International Conference on
Parallel and Distributed Computing Systems. 2006.

2. Ben-Yitzhak, O., et al. Beyond Basic Faceted Search. in International
Conference on Web Search and Data Mining 2008.

3. Apache Solr. Available from: http://lucene.apache.org/solr/.
4. Grainger, T. and T. Potter, Solr in Action. 2014: Manning

publications.
5. Middleton, C. and R. Baeza-Yates. A Comparison of Open Source

Search Engines. in Technical report, Universitat Pompeu Fabra,
Department of Technologies. 2007.

6. Apache Lucene. Available from: http://lucene.apache.org/core/.
7. Po-Huan Chiua, G.Y.-M. Kaob, and C.-C. Loa, Personalized blog

content recommender system for mobile phone users. International
Journal of Human-Computer Studies, 2010. 68(8): p. 496–507.

8. Huang, Z., D. Zeng, and H. Chen, A Comparison of Collaborative-
Filtering Recommendation Algorithms for E-commerce. Journal of
IEEE Intelligent Systems, 2007. 22(5): p. 68-78.

9. Herlocker, J.L., et al., Evaluating Collaborative Filtering
Recommender Systems. ACM Transactions on Information Systems,
2004. 22(1): p. 5-53

10. Bendersky, M., W.B. Croft, and Y. Diao. Quality-Biased Ranking of
Web Documents. in ACM international conference on Web search
and data mining 2011.

11. Manning, C.D., P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. 2008: Cambridge University Press.

12. Bhuyan, M.H., D.K. Bhattacharyya, and J.K. Kalita, Network
Anomaly Detection: Methods, Systems and Tools. IEEE
communications surveys & tutorials, 2014. 16(1): p. 303 - 336.

13. Gupta, M., et al., Outlier Detection for Temporal Data: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 2014. 26(9):
p. 2250 - 2267

http://lucene.apache.org/solr/
http://lucene.apache.org/core/

	I. Introduction
	II. Search fundamentals
	A. Search and SQL
	B. Ranking and Navigation
	C. Big data search
	D. Search software

	III. Solr Search platform stack
	A. Data
	B. Building documents
	C. Indexing and searching
	D. Logic ehancement
	E. Search platform service
	F. UI application

	IV. Advanced search feature development
	A. User experience based search recommendation
	B. Anomaly detection enhanced search ranking

	V. Conclusions
	References

